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Abstract. In fhis article. we shall show that the correlation function of a local operator Bi decays 
if there is another local operator Ai satisfying [H. A;] = mWi, where H is the Hamiltonian of 
the many-body system under consideration and a is a consrant Finally, as an application of this 
ihenrem, we shall rigorously show that the RVB states, which were pmposed by P W Anderson 
and his collaboralotx to explain high-temperam superconductivity. are absent in the Hubbard 
model at half-filling. We also give an argument. which indicates that the existence of the RVB 
ground smtes in the doped cases is highly improbable. 

It is well known that the existence of a specific long-range ordering in a many-body system 
is very difficult to prove or disprove rigorously. For example, the famous Heisenberg 
model [I] w e  proposed in 1928 to explain the magnetic properties of insulators. However, 
it took about 40 years to show that the magnetic long-range order of this model at a 
finite temperature in one or two dimensions did not exist 121. The existence of the 
antiferromagnetic long-range order in three dimensions was established much later and 
the existence. of the ferromagnetic long-range order still remains an 'open problem [MI. 
Here, a great challenge to theorists is to find the proper methods for a concrete model. 

In this article, we shall introduce a new method to prove the absence of some long-range 
orderings.. We shall show that, if the relevant local operator is generated by the commutator 
of the Hamiltonian of a many-body system 'with another local operator, then the two-point 
correlation function of this operator will rapidly decay. As an application of this theorem, 
we shall prove rigorously that the ground state of the Hubbard model at half-filling cannot 
be a resonanting valence bond (RVB) state, which was proposed by Anderson to explain 
newly discovered high-temperature superconductivity [7,8]. We also show strong evidence 
which indicates the non-existence of the RVB states even in a doped Hubbard model. 

Before stating our theorem in a more precise form, we would like to recall several 
definitions and introduce some useful notation; 

As far as solid state physics is concerned, most models are defined on a lattice. In 
other words, their Hamiltonians have discrete forms. Naturally, we shall concentrate on 
such models in the following. For definiteness, we take a finite ddimensional simple cubic 
lattice A and impose the periodic boundm condition on it. For a concrete model, we let Vi 
be the relevant Hilbert space at site i E A (for instance, Vi is spanned by IO), I f), I J ) ,  and 
I T.l) in the Hubbard model). Then, the total Hilbert space. VA is given by &,, Vi. Now, 
HA, which is the restriction of the Hamiltonian in lattice A, can be written as a matrix. 
We denote its normalized global ground-state wavefunction by Yo(A). Let Bi be a local 
operator centred at site i. Following Yang 191, we define a matrix M by 

M~~ = w ~ ( A w ~ B ~ I Y ~ ( A ) ) .  (1) 
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Then, Yo(A) supports a long-range ordering characterized by Ei if and only if the largest 
eigenvalue A,,, of the matrix M satisfies the following inequality 

Amar 2 BNA (2)  

where NA is the number of sites in lattice A and @ is a positive constant independent of 
A. It is not difficult to show [9] that inequality (2) implies 

and vice versa. In particular, if the Hamiltonian is translational invariant, one can show that 
all the eigenvalues of M are of the following form 

with 

and g = (ql, 9 2 , .  . . , q d )  is a reciprocal vector subject to the conditon 0 < qi < 2rr. A 
detailed discussion on this point can be found in [lo]. Therefore, the largest eigenvalue A,, 
corresponds to some reciprocal vector qo and inequality (2) can be rewritten as A,, 2 @NA. 
A direct corollav is that, if 

(6) h.9 = (%(A)l@qlWA)) = W) 
for any reciprocal vector q as lattice A tends to infinity, then the long-range order of Ei 
does not exist. 

With these definitions and notation, we now summarize ow main result in the following 
theorem. 

Theorem. Let HA = HO + V(i - j )  be the Hamiltonian of a latticefermion (boson) 
model, where Ho represents the kinetic energy of independent particles and V ( i  - j )  is the 
interaction of two particles located at sites i and j .  We assume that the interaction V ( i  - j )  
is short-ranged and I VI is bounded Let Ai and Bj be two local operators centred at site i. 
If they satisfy 

aBi = [X, Aj]  (7) 

where a # 0 is a constant, and 

(~o(A)lB,,IYo(A)) = (YO(A)IE,$YO(A)) = 0 (8) 

then, for any reciprocal vector q, 

('WVIE.$,,lWN) = O W  (9) 

as lattice A tends to infinity. In other words, the global ground state *,,(A) of HA does 
not support a long-range ordering of Ej.  
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Remark. Before we proceed to the proof of this theorem, we would like to emphasize 
that equations (7) and ( 8 )  are sufficient conditions for the non-existence of a long-range 
ordering of Bi in Yo(A). Ignoring mathematical rigour, this theorem can be understood by 
the following intuitive argument. Let Yo be the gro&d state of the Hamiltonian H defined 
on the infinite lattice Zd and let Eo be the energy of the ground state . Notice that the 
absolute value of EO is ill defined and, in fact, an infinity. For definiteness, we assume 
that a long-range ordering of Bi in YO exists at q = 0. Then, this long-range ordering can 
be characterized by a non-vanishing expectation value of Bj in Yo, i.e. (YolBjlYo) # 0. . 
(For a finite lattice, this expectation value is generally zero. Instead, one has to study the 
correlation functions of Bi.) However, if equation (7) holds, then this expectation value 
must vanish since 

(10) 
1 1 

( * o l & l ~ o )  = (y (QoKH. AillYo) = -(Eo - E o ) ( W A i l ~ o )  = 0. 
(Y 

Therzfore, a long-range ordering of Bj in YO cannot exist. 

Proof of the theorem. Let {Wn(A)] be a complete set of orthonorm@ eigenvectors of HA. 
We introduce 

s A ( q ,  Bi) E (YO(A) I B,pqi*O(l\)) f (wO(A) IBqBJ I*O(A)). 

s A ( q >  Bi) 2 (qO(A)i@qi@O(A)) > 0 

(11) 

Obviously, 

(12) 

for any g. Inserting {Yn(A)) between f3i and 6,. we obtain 

sA(q ,  Bi) (qn(A)l Eq IYo(A)) I' f I (*n(A)  I B: IYo(A)) 1'1. (13) 

Using the condition (Y~(A)IB~~Y~(A)) = (Y~(A)IE;IY~(A)) = 0, we can write this sum 

n 

as 

where &(A) is the eigenvalue of HA corresponding to Yn(A). Since &(A) is the lowest 
eigenvalue of HA, .the square root of E, (A) - &(A) is well defined, By Cauchy's inequality (c lanbn1)2 < Cc lanlz)(c Ib.lz), we obtain 



2328 Guang-Shan T I  

It is easy to check that the second factor on the right-hand side of inequality (15) is 
equal to 

mA(q. Bi) = (Yo(A)I[B,$ [H, Bq1llYo(4). (16) 

We now simplify the first factor by applying commutation relation (7). which is equivalent 
to the following identity 

a W n ( N  IBql'kdN) = W n  (A) [[HA, Aqll"~(A)) 
= (&(A) - ~o(A))(Y"(A)lAqlYo(A)). (17) 

Substituting this identity into the first factor on the right-hand side of inequality (15), 
we are able to rewrite it as 

a-2mA(q, Ai) ~ ~ ~ z ~ ~ l ~ ~ ~ ~ A ~ l A q l ~ o ~ ~ ~ ~ l * ~ l ~ ~ ~ ~ A ~ l A ~ l Y o ~ A ~ ~ l z l ~ ~ ~ ~ A ~  -Eo(A)) 
" 

= a-2(Y~(A)I[A:, [HA, Aqlll*o(A)). (18) 

Therefore, 

0 4 W o ( ~ ) I ~ ~ ~ , , l ~ o W  4 S A k .  4 ~ - ' J ~ A ( Q ,  Ai)mh(q, Bi). (19) 
If we can show that both mA(q,  Ai) and mA(q, Bi) are of 0(1) as A tends to infinity for 
any q, then our theorem is established. 

For definiteness, let us consider mA(q,  A;). By the definition of mA(q, Ai), it is the 
expectation value of [ A i ,  [ H A .  A,,]] in the ground state Yo(A) and hence, it is a positive 
quantity. On the other hand, due to the fact that A i  is a local operator and V is short-ranged, 
the commutator must be of the following form 

where (Oi(q)} are some local operators dependent of q. In general, they are polynomials 
of the creation and annihilation operators of fermions or bosons. These statements can 
be easily checked by calculating the commutator for a concrete model. For instance, one 
can check equation (20) with the Hubbard Hamiltonian (definition (24)) and the operator 
A, = ( ~ / N A ) * / '  CiEA exp[-iq - j ] c i ~ c i ~ .  Therefore, 

0 < WO(A)I[A;. [HA. A,,111~0(~))  4 --N~max I ( Y o ( ~ ) I ~ ~ ( ~ ) I Y o ( ~ ) ) I .  
NA 1.q 

Since 1111 is bounded, we can find a positive constant C, which is independent of i, q and 
A, such that 

(21) 
1 

I (*o(A) I W q )  IYo(A)) I 4 C. (22) 
Combining (20), (21) and (22) yields 

mA(Q, Ai) = O(1) 

as A tends to infinity. Similarly, one can show that mA(q. Bi) is also of O(1). Therefore, 
SA(% Bi) and (Yo(A)IB&,lYo(A)) are at most O(1) for any reciprocal vector q. Namely, 
a long-range ordering of Bi is absent. 

Our proof is accomplished. 0 
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Some remarks are in order. 

Remark I .  A similar inequality was used in [5] to show the existence of the 
antiferromagnetic long-range order in the ground state of a three-dimensional spin-; 
Heisenberg model. 

R e m r k  2. Inequality (22) can be formally proven by using the well known Gershgorin's 
theorem in matrix theory [l 11. One can find a short proof of this theorem and its application 
to Nagaoka theorem for the infinite-U Hubbard model in [I21 and [13]. 

R e m r k  3. In the following, we shall study the Hubbard model. With the concrete forms 
of HA and the relevant local operators Ai (B i )  being given, one can easily check the validity 
of all the statements contained in (20). (21) and (22) about m ~ ( q ,  Ai) (mA(q, Bi)). 

As an application of our theorem, we now show the absence of the resonanting valence 

The Hubbard Hamiltonian is of the following form 
bond (RVB) states in the Hubbard model. 

where cli (ca) is the fermion creation (annihilation) operator which creates (annihilates) 
a fermion with spin U at lattice site i. nit (nu) is the fermion number operators which 
measures the number of fermions with upspin (downspin) at site i. (ii) denotes a pair Of 
nearest-neighbour sites of A. f > 0 and U > 0 are two parameters representing the kinetic 
energy and the on-site Coulomb repulsion of fermions, respectively. /I is the chemical 
potential. It is easy to see that this Hamiltonian commutes with N t  (NJ), the number 
operator of upspin (downspin) fermions. Consequently, the total number of fermions is also 
a conserved quantity. When Nt + NJ = N A ,  the lattice is half-filled. For obvious reasons, 
the system is called doped with holes if Np + N J  < N A .  

Originally, this model was introduced [I41 to explain the itinerant electron 
ferromagnetism 1151 and Mott metal-insulator transition 1161. After the discovery of 
high-temperature superconductivity in the rare-earth-based copper oxides, Anderson  and^ his 
collaborators proposed [7,8] that the physical properties of these materials can be described 
by a two-dimensional Hubbard model and the ground state of this model should be an RVB 
state. By definition, an RVB state s is characterized by a non-vanishing expectation value 
of the following operator 

in it. In definition (25), i and j are two nearest-neighbour sites. By definition, it is easy 
to see that b(ij) = b u i ~  We shall use this relation in the following. We would also 
like to emphasize that C' is an eigenstate of H, not HA. While the former is defined 
on the whole infinite lattice, the latter is only its restriction on the finite lattice A. For an 
eigenstate of H A ,  the expectation value of b(ij), which contains only particle annihilation 
operators, will be identically zero because C'A must be an eigenvector of the total particle 
number operator k,  On the other hand, rlr may not be an eigenvector of &' if spontaneous 
symmetry breaking occurs. Based on his proposal, Anderson developed a new theory for 
high-temperature superconductivity. 
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However, as research goes into more depth, more and more results show evidence 
which disfavour the existence of the RVB states in the Hubbard model. For example, 
by using the second-order perturbation theory and mapping the Hubbard Hamiltonian to 
an antiferromagnetic Heisenberg model in the large-U limit, Baskaran and Anderson [I71 
argued that the ground state at half-filling cannot be an RVB state. More precisely, they 
showed that, under the gauJe transformation ci0 + exp(i&)c,, the Heisenberg Hamiltonian 
is invariant. Therefore, (Ylb(;j)lG) must be zero by a theorem due to Elitzur 1181. Their 
conclusion has been conformed by Zhang [19]. By exploiting the following commutation 
relation satisfied by the Hubbard Hamiltonian, 

[H. C i t C i l I  = t C b ( i k )  - (I - 2p)UCitCil 
k 

where the sum is over all the nearest-neighbour sites of i, Zhang showed that 

Therefore, the order parameter of the RVB states is related to the on-site s-wave pairing 
amplitude. In particular, the right-hand side of (27) will vanish at half-filling since p = 1/2 
in this case. In the following, we shall take a different approach. By using the theorem 
proven above, we show that the off-diagonal-long-range-order (ODLRO) correlation function 
of b(ij) decays. Therefore, the RVB ground states do not exist in the Hubbard model. In 
this way, we are able to make Zhang’s argument mathematically rigorous. 

Let us first consider the half-filled case. For technical convenience, we define 

Ai = cipcil Bi x b ( i s r .  (28) 
k 

Then, the totality of the matrix elements Mhl defined by equation (1) is, in fact, the ODLRO 
correlation function of Ck b(jk). which is propoItional to the ODLRO correlation function 
of b(ij) since b(ij) = blii). Therefore, if Mhl tends to zero as Ih - I [  tends to infinity, the 
ground state of the Hubbard model cannot be an RVB state. 

To apply the theorem, there are two problems which have to be solved. 
(i) Commutator (26) is not exactly in form (7). 
(ii) The ground state Yo(A) may not be the global ground state of HA. 
Fortunately, these difficulties can be simultaneously overcome by letting /I = 1/2 in 

definition (24). Now, commutation relation (26) is reduced to the standard form (7) and it 
is well known [201 that Yo(A) at half-filling is the global ground state of HA with /I = 1/2. 
Therefore, without further ado, we immediately find that Aq = O(1) for any q as A tends to 
infinity. As we have said above, it implies the absence of an RVB ordering in the Hubbard 
model at half-filling. 

Next, we study the doped cases. Although we cannot prove it rigorously, we shall 
argue that the existence of the RVB long-range order in the ground states with doping is 
highly impossible. Our strategy is, by using inequality (15). to show that the existence of 
a RVB long-range ordering implies the existence of an on-site pairing long-range ordering 
(OSPLRO). Then, we argue that the existence of OSPLRO in the Hubbard model is impossible 
when the on-site Coulomb repulsion U is large. 

Since the spectra of HA in these cases are not clearly known, we have to make 
some plausible assumptions. Let W&, Nh)  be the ground state of HA in the sector of 



A new method to show the absence of some long-range orderings 2331 

Nh = NA - ( N +  + N L )  # 0. We first assume that, by fine tuning the value of p, one can 
make Yo(A, Nh) the global ground state of HA and this specific ,Z is determined by 

d a 
--Eo(& Nn. p)l&=; = (%(A, N~)I-HA(F)I'J'O(A, N d )  
dk a@ 

= [ - (N+  + N $ )  f 2bNAlu 
= o  (29) 

where E&%. N,,, f i )  = (%(A, Nh)lHA(b)l%(A, Nn)). Solving equation (29). we obtain 

and hence, 1 - 2fi 2 0 in the doped cases. If we further assume that the ground-state 
wavefunction '&(A, Nh) satisfies 

(%(A, Nh)IN+IYdA, Nh)) = ( W A ,  N~INJ IWA,  Nk)) (31) 

then ii can be rewritten as 

f i  = ( n + )  = (q) (32) 

where (n?) and (nr )  are the averaged density of the particles with upspin and downspin, 
respectively. Now, the Hubbard Hamiltonian reads 

From this form of the Hamiltonian, we see immediately that deviation of nit and niL from 
(n+) and (nr )  will make the Coulomb repulsion energy larger and hence, the energy of the 
system higher. This is consistent with our assumptions. 

Now, equation (26) gives 

W n ( 4  Nh)l Cb(iql%(A, Nd) 
k 

A similar identity holds for Ckh:ik), in which the factor [E.-Eo+(l -2F)U]/t is replaced 
with [ E ,  -Eo-(1-2,C)U]/t .  Therefore, the theorem cannot be directly applied. To proceed 
further, a slight change in inequality (15) has to be made. Noticing 1 - 2b > 0, we can 
safely replace J- in equation (14) with JE. - EO + (1 - 2fi)f.I and inequality (19) 
now reads 
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Now, if we assume that Sqo(A, Ck b(ik)) = O(NA) for some reciprocal verctor 40. i.e. 
there is an RVB long-range ordering. Then, the left-hand side of inequality (35) will be of 
order O ( N i ) .  Since both mA(go, c i tc i~)  and mA(q0, Ck b(ik)) are of 0(1), that requires 

Otherwise, inequality (35) fails. Therefore, the existence of an RVB long-range ordering 
implies the existence of an on-site pairing long-range ordering. However, when the on-site 
Coulomb repulsion U is large, the probability amplitude of the configurations with doubly 
occupied sites in the ground state will be greatly suppressed. Therefore, an on-site pairing 
long-range ordering can hardly exist. Consequently, we would expect that the RVB states to 
be absent even in the doped Hubbard models. 
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